Fechar

@MastersThesis{Souza:2017:MoMuEm,
               author = "Souza, Greison Moreira de",
                title = "Modelagem multiescala da emiss{\~a}o de carbono pela queima de 
                         biomassa no cerrado",
               school = "Instituto Nacional de Pesquisas Espaciais (INPE)",
                 year = "2017",
              address = "S{\~a}o Jos{\'e} dos Campos",
                month = "2017-07-19",
             keywords = "biomassa, cerrado, emiss{\~a}o de gases, queimadas, sensoriamento 
                         remoto, biomass, savannah, emission of gases, biomass burning, 
                         remote sensing.",
             abstract = "A queima de biomassa que ocorre no Brasil desempenha um papel 
                         importante nas emiss{\~o}es globais de gases tra{\c{c}}os e 
                         aeross{\'o}is, devido {\`a} grande cobertura vegetal do 
                         pa{\'{\i}}s e ao intenso processo de mudan{\c{c}}a de uso da 
                         terra. O avan{\c{c}}o do monitoramento dos recursos terrestres 
                         por sensoriamento remoto permitiu a obten{\c{c}}{\~a}o 
                         quantitativa da energia liberada durante todo o ciclo de vida da 
                         queimada, denominada de Energia Radiativa do Fogo (FRE). Para 
                         tanto, o presente estudo visa modelar em multiescalas o montante 
                         de biomassa queimada e as emiss{\~o}es de gases e material 
                         particulado em uma {\'a}rea de campo limpo e campo cerrado no 
                         Parque Nacional das Sempre-Vivas (PNSV): (1) queimada controlada 
                         com obten{\c{c}}{\~a}o de medidas diretas por invent{\'a}rio 
                         florestal; (2) estimativa in situ da FRE por meio de c{\^a}mera 
                         termal; e (3) a partir do MODIS/Aqua, VIIRS/S-NPP e 
                         SEVIRI/METEOSAT. O total de biomassa acima do solo foi 7,71 e 
                         17,34 t.ha-1 para as forma{\c{c}}{\~o}es campo limpo e campo 
                         cerrado, respectivamente. A {\'a}rea de campo limpo apresentou 
                         92,47% (7,12 t.ha-1) de perda de biomassa (fator de 
                         combust{\~a}o) e 39,79% (6,89 t.ha-1) na forma{\c{c}}{\~a}o 
                         campo cerrado ap{\'o}s a queimada controlada. Assim, estimou-se 
                         3,57 e 3,43 t.ha- 1 de disponibiliza{\c{c}}{\~a}o de carbono em 
                         campo limpo e campo cerrado, respectivamente, considerando que 50% 
                         da biomassa {\'e} carbono. A queimada controlada na {\'a}rea de 
                         campo limpo emitiu para a atmosfera um total de 12,43 t.ha-1 CO2; 
                         0,34 t.ha-1 CO; 0,01 t.ha-1 CH4 e 0,01 t.ha-1 PM2,5\μm, na 
                         fitofisionomia campo cerrado as emiss{\~o}es atmosf{\'e}ricas 
                         foram: 11,7 t.ha-1 CO2; 0,47 t.ha-1 CO; 0,008 t.ha-1 CH4 e 0,03 
                         t.ha-1 PM2,5\μm, medidas obtidas a partir do invent{\'a}rio 
                         florestal. A m{\'a}xima Pot{\^e}ncia Radiativa do Fogo (FRP) 
                         registrada no experimento de queimada controlada foi 89,18 MW 
                         (794,89 K) e 20,75 MW (635,02 K) em campo limpo e campo cerrado, 
                         respectivamente. Em campo limpo a FRE foi 21.350,60 MJ. Dessa 
                         forma, foram queimadas 17,64 t de biomassa na {\'a}rea recoberta 
                         pela c{\^a}mera termal, o que corresponde a 8,16 t.ha-1. Assim, a 
                         estimativa de biomassa queimada derivada a partir da FRE foi 14,4% 
                         maior que o resultado do invent{\'a}rio florestal. As estimativas 
                         de emiss{\~o}es dos gases tra{\c{c}}os e do material particulado 
                         por meio da FRE foi 14,6% maior do que as estimativas derivadas a 
                         partir do invent{\'a}rio florestal. Esses resultados provam a 
                         robustez das estimativas realizadas com a c{\^a}mera termal, uma 
                         vez que esta deriva{\c{c}}{\~a}o {\'e} realizada de forma 
                         indireta com o emprego da energia que {\'e} emitida pelo processo 
                         da combust{\~a}o. Infere-se, ent{\~a}o, a fun{\c{c}}{\~a}o 
                         direta da emiss{\~a}o de energia com a quantidade de biomassa 
                         consumida e de emiss{\~o}es atmosf{\'e}ricas. A 
                         quantifica{\c{c}}{\~a}o de biomassa queimada e de emiss{\~o}es 
                         a partir de sensores orbitais tem encontrado dificuldade devido 
                         {\`a} combina{\c{c}}{\~a}o dos fatores de resolu{\c{c}}{\~a}o 
                         espacial e temporal. O lan{\c{c}}amento de novos sistemas 
                         remotos, com melhor rela{\c{c}}{\~a}o resolu{\c{c}}{\~a}o 
                         espacial e temporal, como a s{\'e}rie de quatro sat{\'e}lites 
                         (GOESR/ S/T/U), representa um novo caminho na obten{\c{c}}{\~a}o 
                         de informa{\c{c}}{\~o}es sobre as queimadas a partir da FRP. 
                         ABSTRACT: The biomass burning in Brazil plays an important role in 
                         global atmospheric emissions of trace gases and aerosol, due to 
                         the large vegetation cover and intense change of land-cover in the 
                         country. The advancement of monitoring by remote sensing allowed 
                         to quantify the energy released in the form of electromagnetic 
                         radiation during the burning, called Fire Radiative Energy (FRE). 
                         Therefore, the present study aims to model in multiscale the 
                         amount of biomass burned above ground and the atmospheric 
                         emissions in a grassland and closed field area in Parque Nacional 
                         das Sempre-Vivas (PNSV): (1) controlled burning with direct 
                         measurements by forest inventory; (2) estimation in situ of FRE 
                         through the thermal camera; (3) and estimation from MODIS/Aqua, 
                         VIIRS/S-NPP and the SEVIRI/METEOSAT. Forestry inventory estimated 
                         7.71 and 17.34 t.ha-1 of above ground biomass for grassland and 
                         closed field, respectively. The grassland showed 92.47% (7.12 
                         t.ha-1) biomass loss (combustion factor) while closed field 
                         formation showed 39.79% (6.89 t.ha-1) after controlled burning. 
                         Thus, it was estimated that 3.57 and 3.43 t.ha-1 of carbon 
                         availability in the grassland and closed field, respectively, 
                         whereas that 50% of the biomass is carbon. Controlled burning in 
                         the grassland emitted to the atmosphere a total of 12.43 t.ha-1 
                         CO2; 0.34 t.ha-1 CO; 0.01 t.ha-1 CH4 and 0.01 t.ha-1 
                         PM2.5\μm, in the closed field emissions were: 11.7 t.ha-1 
                         CO2; 0.47 t.ha-1 CO; 0.008 t.ha-1 CH4 and 0.03 t.ha-1 
                         PM2.5\μm, measurements obtained from the forest inventory. 
                         The maximum Fire Radiative Power (FRP) recorded from the field 
                         scale combustion experiment was 89.18 MW (794.89 K) and 20.75 MW 
                         (635.02 K) in the grassland and closed field, respectively. In the 
                         grassland, the FRE was 21,350.60 MJ, hence, 17.64 t of biomass 
                         were burned in the area covered by the thermal camera, 
                         corresponding to 8.16 t.ha-1. That being the case, the estimate of 
                         biomass burned from the FRE was 14,4% higher than the result of 
                         the forest inventory and estimates of launch of trace gases and 
                         aerosol estimated by the thermal camera were 14,6% higher than the 
                         forest inventory. These results prove the robustness of the 
                         estimates made with the thermal camera, because these derivations 
                         are realized indirectly with the use of the energy that is emitted 
                         by the combustion process, attesting the direct function of the 
                         emission of energy with the amount of biomass consumed and 
                         atmospheric emissions. The quantification of the biomass burned 
                         and the emissions from orbital sensors has encountered 
                         difficulties due to the combination of spatial and temporal 
                         resolution factors. The launch of new remote systems with better 
                         relation spatial and temporal resolution, such as the four 
                         satellites series (GOES-R/S/T/U), represents a new way of 
                         obtaining information on fires from the FRP.",
            committee = "Shimabukuro, Yosio Edemir (presidente) and Moraes, Elisabete Caria 
                         (orientadora) and Arag{\~a}o, Luiz Eduardo Oliveira e Cruz de 
                         (orientador) and Pereira, Gabriel",
         englishtitle = "Multiscale modeling of carbon emission from biomass burning in the 
                         cerrado",
             language = "pt",
                pages = "121",
                  ibi = "8JMKD3MGP3W34P/3P5A4EH",
                  url = "http://urlib.net/ibi/8JMKD3MGP3W34P/3P5A4EH",
           targetfile = "publicacao.pdf",
        urlaccessdate = "27 abr. 2024"
}


Fechar